水處理設(shè)備知識:生物脫氮工藝匯總
【蘭州純水設(shè)備http://www.top711.com】傳統(tǒng)的生物脫氮工藝基本原理是在二級生物處理過程中,先將有機氮轉(zhuǎn)化為氨氮,再通過硝化菌和反硝化菌的作用將氨氮轉(zhuǎn)化為亞硝態(tài)氮和硝態(tài)氮,最終通過反硝化作用將硝態(tài)氮轉(zhuǎn)化為氮氣完成脫氮。因為硝化與反硝化反應(yīng)的進行存在相互制約的關(guān)系;在有機物大量存在的情況下,自養(yǎng)硝化菌對氧氣和營養(yǎng)物的競爭力不如好養(yǎng)異養(yǎng)菌,無法占據(jù)主導(dǎo)地位;反硝化需要有機物作為電子供體,但是硝化過程去除了大量的有機物,導(dǎo)致反硝化過程中碳源缺乏,所以為平衡兩單元的不同需求蘭州純水設(shè)備,發(fā)展出多種生物脫氮方法相結(jié)合的工藝。
傳統(tǒng)的生物脫氮工藝主要依靠調(diào)整工藝流程來緩解硝化菌反應(yīng)環(huán)境和反硝化菌反應(yīng)環(huán)境之間存在的矛盾。如果硝化反應(yīng)階段在前,則需要外加電子供體例如甲醇等物質(zhì),提高了運行費用;如果硝化反應(yīng)階段在后,蘇州水處理設(shè)備則需要將硝化廢水回流,容易產(chǎn)生污泥上浮并且需要提高回流比以獲得更高的去除率。這個矛盾在處理氨氮濃度較低的市政廢水中尚不明顯,但在處理垃圾滲濾液、畜牧廢水等高濃度氨氮廢水時,極大的限制了系統(tǒng)脫氮效率。工業(yè)純水設(shè)備
近年來通過理論研究和實踐創(chuàng)新,人們發(fā)現(xiàn)了一些與傳統(tǒng)生物脫氮理論相反的生物脫氮方法,如SND工藝、SHARON工藝、ANAMMOX工藝、SHARON-ANAMMOX組合工藝、OLAND工藝、CANON工藝。
1、同步硝化反硝化(SND)脫氮工藝
根據(jù)傳統(tǒng)生物脫氮理論,脫氮途徑一般包括硝化和反硝化兩個階段,硝化和反硝化兩個過程需要在兩個隔離的反應(yīng)器中進行,或者在時間或空間上造成交替缺氧和好氧環(huán)境的同一個反應(yīng)器中;實際上,較早的時期,在一些沒有明顯的缺氧及厭氧段的活性污泥工藝中,人們就層多次觀察到氮的非同化損失現(xiàn)象蘭州水處理設(shè)備,在曝氣系統(tǒng)中也曾多次觀察到氮的消失。在這些處理系統(tǒng)中,硝化和反硝化反應(yīng)往往發(fā)生在同樣的處理條件及同一處理空間內(nèi),因此,這些現(xiàn)象被稱為同步硝化/反硝化(SND)。
對于各種處理工藝中出現(xiàn)的SND現(xiàn)象已有大量的報道,包括生物轉(zhuǎn)盤、連續(xù)流反應(yīng)器以及序批示SBR反應(yīng)器等等。與傳統(tǒng)硝化-反硝化處理工藝比較,SND能有效地保持反應(yīng)器中pH穩(wěn)定,減少或取消堿度的投加;蘇州水處理設(shè)備減少傳統(tǒng)反應(yīng)器的容積,節(jié)省基建費用;對于僅由一個反應(yīng)池組成的序批示反應(yīng)器來講,SND能夠降低實現(xiàn)硝化-反硝化所需的時間;曝氣量的節(jié)省,能夠進一步降低能耗。工業(yè)純水設(shè)備
因此SND系統(tǒng)提供了今后降低投資并簡化生物除氮技術(shù)的可能性。
2、短程硝化脫氮(SHARON)工藝
SHARON工藝即短程硝化脫氮工藝,是荷蘭Delft技術(shù)大學(xué)1997年提出開發(fā)的新型生物脫氮工藝?;驹硎窃谕粋€反應(yīng)器內(nèi),在有氧的條件下,自養(yǎng)型亞硝酸菌將NH3-N轉(zhuǎn)化為NO2-,然后在缺氧條件下,蘭州純水設(shè)備異養(yǎng)型反硝化菌以有機物為電子供體,以NO2-為電子受體,將NO2-轉(zhuǎn)化為N2。其理論基礎(chǔ)是亞硝酸型硝化反硝化技術(shù),生化反應(yīng)可用下式表示
該工藝的關(guān)鍵是如何將氨氧控制在亞硝酸階段,并持久維持在較高濃度的亞硝酸鹽積累。
該工藝使用無需污泥停留的CSTR反應(yīng)器,在較短的HRT和30~40攝氏度的條件下,通過“洗泥”的方式進行種群篩選,產(chǎn)生大量的亞硝酸菌。SHARON工藝適用于高濃度氨(500mg/L)廢水的處理,尤其適用于具有脫氨要求的預(yù)處理或旁路處理。該工藝與傳統(tǒng)工藝相比可節(jié)省供氧量25%,可節(jié)省反硝化碳源40%。
3、厭氧氨氧化(ANAMMOX)工藝
ANAMMOX工藝是荷蘭Delft大學(xué)1990年提出的一種新型脫氮工藝。在厭氧條件下,微生物以NH3-N為電子供體,NO2-為電子受體,把NH3-N、NO2-轉(zhuǎn)化為N2的過程。其生化反應(yīng)可由下式表示
厭氧氨氧化過程中起作用的微生物是ANAMMOX菌。該菌是專性厭氧化學(xué)無機自養(yǎng)細菌,生長十分緩慢,在實驗室的條件下世代期為2~3周,厭氧氨氧化過程的生物產(chǎn)量很低,相應(yīng)污泥產(chǎn)量也很低。
ANAMMOX工藝的影響因素主要集中在系統(tǒng)環(huán)境對ANAMMOX菌的抑制。主要影響因素包括反應(yīng)器的生物量、基質(zhì)濃度、ph值、溫度、水力停留時間和固體停留時間等。
該工藝相比傳統(tǒng)的脫氮過程,耗氧下降62.5%,不需要外加碳源,節(jié)約成本,不需調(diào)節(jié)ph值降低運行費用。但是也存在不足:蘭州水處理設(shè)備工藝還沒有實現(xiàn)實用化和長期穩(wěn)定運行,ANAMMOX菌生長緩慢,啟動時間長,為保持反應(yīng)器內(nèi)足夠多的生物量,需要有效的截留污泥等。
4、亞硝酸型硝化-厭氧氨氧化脫氮(SHARON-ANAMMOX)技術(shù)
SHARON工藝可以通過控制溫度、水力停留時間、pH 等條件,使氨氧化控制在亞硝化階段。目前盡管SHARON工藝以好氧/厭氧的間歇運行方式處理富氨廢水取得了較好的效果,但由于在反硝化期需要消耗有機碳源,并且出水濃度相對較高,因此目前很多研究改為以SHARON工藝作為硝化反應(yīng)器, 而ANAM MOX工藝作為反硝化反應(yīng)器進行組合工藝的研究。通常情況下SHARON工藝可以控制部分硝化,使出水中的NH3-N與NO2-比例為 1∶1 , 從而可以作為ANAMMOX工藝的進水,組成一個新型的生物脫氮工藝,其反應(yīng)如下式所示工業(yè)純水設(shè)備
SHARON -ANAM MOX的組合工藝具有耗氧量少、污泥產(chǎn)量少、不需外加碳源等優(yōu)點,是迄今為止最簡捷的生物脫氮工藝,具有很好的應(yīng)用前景。
5、限制自養(yǎng)硝化反硝化(OLAND)工藝
根據(jù)亞硝酸型硝化—厭氧氨氧化脫氮技術(shù)原理,比利時Gent大學(xué)微生物生態(tài)實驗室開發(fā)出OLAND工藝(限制自養(yǎng)硝化反硝化) ,蘭州純水設(shè)備具有耗氧量少、污泥產(chǎn)量少、不需外加碳源等優(yōu)點。
OLAND工藝是限氧亞硝化與厭氧氨氧化相耦聯(lián)的一種新穎的生物脫氮反應(yīng)工藝,該工藝分兩個過程進行:第一步是在限氧條件下將廢水中的部分氨氮氧化為亞硝酸鹽氮:第二步是在厭氧條件下亞硝酸鹽氮與剩余氨氮發(fā)生厭氧氨氧化反應(yīng)(ANAMMOX),從而去除含氮污染物。其機理是由亞硝化細菌對亞硝酸鹽氮催化進行歧化反應(yīng)??偡磻?yīng)式為:
該工藝的核心技術(shù)是在限養(yǎng)亞硝化階段通過嚴格控制溶解氧水平,將近50%的NH3-N轉(zhuǎn)化為NO2-,實現(xiàn)硝化階段穩(wěn)定的出水比例[NH3-N:NO2-=1:1],從而為厭氧氨氧化階段提供理想的進水,提高整個工藝的脫氮效率。
相比傳統(tǒng)工藝,OLAND工藝可以節(jié)省62.5%的耗氧量,不需要加入外加有機碳源,產(chǎn)生的污泥量也很少,可有效減低運行成本。與SHARON-ANAMMOX組合工藝相比,可節(jié)省37.5%的能耗,在較低溫度(22~30攝氏度)仍可獲得較好的脫氮效果,在兩階段懸浮式生物膜脫氮系統(tǒng)中,內(nèi)浸式生物膜的加入克服了SHARON-ANAMMOX組合工藝中生物量流失的缺點,避免了硝化階段的微生物對 厭氧氨氧化階段微生物的影響,使反應(yīng)過程更加容易控制,增加了脫氮反應(yīng)過程的穩(wěn)定性。
OLAND工藝在混合菌群連續(xù)運行的條件下尚難以對氧和污泥的pH值進行良好的控制,若工藝運行過程中可以通過化學(xué)計量方法合理地控制氧的供給則可有效地控制在亞硝化階段。同時,該工藝僅在生物膜系統(tǒng)中獲得了良好的效果蘭州水處理設(shè)備,蘇州水處理設(shè)備在懸浮系統(tǒng)中低氧下活性污泥的沉降性、污泥膨脹以及同步硝化反硝化等問題仍有待于進一步研究與完善。在實際應(yīng)用中,由于厭氧氨氧化階段的生物量生長非常緩慢,同SHARON-ANAMMOX組合工藝一樣仍然存在著啟動時間長的問題(>=100 d)。
6、單級全程自養(yǎng)脫氮(CANON)工藝
1999年THIRD K A等首先提出,CANON是一種基于亞硝酸氮的單級全程自養(yǎng)脫氮工藝,其理論基礎(chǔ)是在一體化反應(yīng)器體系內(nèi)同時實現(xiàn)半短程硝化與厭氧氨氧化反應(yīng)。在生物膜表面或顆粒污泥表面,由于處于低溶解氧環(huán)境,蘭州純水設(shè)備部分氨氮在氨氧化菌的作用下被氧化成亞硝酸氮;在生物膜內(nèi)部或顆粒污泥內(nèi)部,由于處于厭氧環(huán)境,產(chǎn)生的亞硝酸氮和剩余氨氮在厭氧氨氧化 菌的作用下反應(yīng)生成氮氣,并產(chǎn)生很少量的硝酸氮,從而實現(xiàn)氨氮從廢水中的去除。
該工藝去除氨氮的影響因素有溫度、DO、ph值、水中游離氨(FA)、有機物、重金屬離子、重金屬沉淀物等。CANON工藝雖然革新了傳統(tǒng)生物脫氮的思路,但要大規(guī)模工程化還存在一些局限性。例如啟動周期長蘭州水處理設(shè)備,厭氧氨氧化反應(yīng)階段的功能菌 AnAOB增殖緩慢,世代時間為7~14 d,是反硝化菌的幾十倍,蘇州水處理設(shè)備因此富集培養(yǎng)困難,世界上第一個生產(chǎn)性裝置啟動時間長達3.5年;其次溫度要求高,現(xiàn)已報道的CANON 工藝基本都是30 ℃以上,并不是所有廢水都能達到該標準,若加熱勢必會帶來能耗增加,運行易失穩(wěn),由于亞硝酸鹽積累而進行排泥,結(jié)果降低了反應(yīng)器的生物質(zhì)濃度 造成系統(tǒng)失穩(wěn);還會排放溫室氣體N2O。工業(yè)純水設(shè)備
CANON 工藝是迄今為止更為新型的生物脫氮方法,與傳統(tǒng)的生物脫氮工藝相較有明顯的優(yōu)勢,因而有廣闊的應(yīng)用前景,目前CANON已逐步向?qū)嶋H工程推進,但作為一項新型脫氮工藝,其還存在一些問題尚需改進與解決。蘭州水處理設(shè)備 超純水設(shè)備
- 上一篇:上海市《農(nóng)村生活污水處理設(shè)施水污染物排放標準》解讀 2019/10/11
- 下一篇:國慶大典環(huán)保細節(jié)傳遞綠色發(fā)展理念 2019/10/10